

Décarboniser l'industrie en Wallonie :

« le défi de l'infrastructure »

insights from the

www.PathwaysExplorer.org

Agenda

Climact

L'ambition attendue pour réduire les émissions

CLIMACT

Les leviers pour réduire

Insights sur base de roadmaps

CLIMACT

Our vision

A zero-carbon sustainable society by 2050

What we do Energy & climate change services

Legal &

Regulatory

Advisory

Our mission

Empower our clients to act on climate change

Strategy Consulting

Project Development

CLIMACT

We provide Energy & climate change services

Strategy Consulting

Legal & Regulatory Advice

Prospective Studies Our team is

- Multidisciplinary
- Engaged
- Dedicated

We value

Collaboration

CLIMACT

- Impact
- Coherence

CLIMACT 2050 Pathways Explorer

www.PathwaysExplorer.org

The Pathways Explorer is a **step-by-step solution** supporting organisations, and **equipping them with a robust analytical foundation**, enabling the development of **country energy transition scenarios** based on credible and transparent assumptions.

Behind the process is **a web-based tool** which enables to explore possible futures and assess the implications and trade-offs of their choices.

Simulations can be **performed in real time**, offering a direct understanding of the key levers of the low carbon transition.

The exploration scope encompasses **the energy system and its dynamics, all GHG emissions**, and the associated resources and socio-economic impacts.

With the financial supp

How does it work ? Simplified example

CLIMACT

The Pathways Explorer is being used throughout the world

Legend

Use and QA by administration Use and QA by NGOs Use and QA in other MacKay calculators Not modelled yet

CLIMACT

Agenda

Climact

L'ambition attendue pour réduire les émissions

La perspective Climact

- L'ambition totale
- La déclinaison de cette ambition par secteur
- Les leviers pour réduire
- Insights sur base de roadmaps

10 years of roadmaps and tool developinglobal, European, national, regional and

Project

Global Calculator (for DECC)

Climate Transparency Initiative (CW Foundation) Science Based Targets

EUCalc (H2020 project for the commission)

Climate Transparency Initiative (for ECF)

Low Carbon group (Bruegel)

2050 Pathways explorer at country level

Various national analysis (a.o., SPF, BE.FIN, Heinrich Böll Stiftung, Greenpeace)

2050 regional calculators & analysis Sector roadmaps

Regional analysis (AWAC, DGO4, IBGE)

City roadmaps EU-City-Calc Neighbourhood engagement

Sector roadmaps

Agenda

Climact

L'ambition attendue pour réduire les émissions

- La perspective Climact
- L'ambition totale
- La déclinaison de cette ambition par secteur
- Les leviers pour réduire
- Insights sur base de roadmaps

Trois messages

- Pour ne pas augmenter la température de plus de 1.5°
 - les objectifs deviennent plus ambitieux
 - le CCU/S a un role de plus en plus central
 - le CCU/S est adapté à l'urgence à laquelle nous sommes confrontés car il permet des cycles d'investissements plus courts (par rapport aux standards industriels)

Des infrastructures soutenant le CCU/S doivent être implémentées maintenant

CLIMACT

Le monde dispose d'un budget carbone pour limiter l'augmentation de la température

Each year we emit ~50GtCO2e**

* Source GIEC. Le budget carbone correspond à 50% de chance de limiter la temperature globale à ces valeurs.

** Our World in Data (<u>https://ourworldindata.org/emissions-by-sector</u>), 30Gt only CO2, 20Gt rest (CH4, N2O, deforestation, etc)

13 SOURCE: The economist :The world is going to miss the totemic 1.5c climate target, Briefing (2022/11/05/)

CLIMACT

Le monde dispose d'un budget carbone pour limiter l'augmentation de la température

Removals ↓

CLIMACT

Idéalement, la réduction se réparti dans le temps

Removals ↓

CLIMACT

Il ne nous reste plus que 7 ans, donc la pente devra être raide si on attend

Removals ↓

CLIMACT

Aplanir la pente requiert de dépasser le budget

Removals ↓

Dépassement qui peut être "neutralisé" par des captures

Dépassement qui peut être "neutralisé" par des captures

CONFIDENTIAL

CLIMACT

Agenda

Climact

L'ambition attendue pour réduire les émissions

- La perspective Climact
- L'ambition totale
- La déclinaison de cette ambition par secteur
- Les leviers pour réduire
- Insights sur base de roadmaps

The standards requires companies to reduce emissions by 50% every 10 years

Upcoming standard for all companies is the Science Based Targets "Net zero"	 Requires ~90% reduction by 2050 Tolerates max 10% neutralisation
Recommended methodology for most sectors is Science Based Target "Absolute contraction"	 Requires every 10 years a reduction of 50% on scopes 1& 2 25% on scope 3 Independent of growth
Sectors progressively can follow a sectoral decarbonisation guideline	 Sector specific decarbonisation pathways are currently being developed

Agenda

Climact

L'ambition attendue pour réduire les émissions

CLIMACT

Les leviers pour réduire

- Overview
- Focus CCU et CCS

Insights sur base de roadmaps

6 levers specify the Walloon industrial activity

Backup

4 more levers then decarbonize the industrial processes

Backup

Depending the on the location, sector and technology, the prioritisation will change between fuels switches, CCU and CCS

Some less prioritized levers will need to be leveraged, e.g. because they can be deployed faster

CONFIDENTIAL

27

Agenda

Climact

L'ambition attendue pour réduire les émissions

CLIMACT

Les leviers pour réduire

- Overview
- Focus CCU et CCS

Insights sur base de roadmaps

Carbon captured can be either used or stored

CO₂ can be captured from multiple sources

30

Used CO₂ can be used directly or converted first

Within the 'conversion' applications, there are 3 main types of CCU

	e-Fuels	Chemicals	Building materials
Basic principle	 Combine CO₂ with (green) H₂ to make CCU hydrocarbons E.g. synthetic methane, synthetic (m)ethanol, Fischer-Tropsch fuels 	 Combine CO₂ with (green) H₂ to CCU-based chemicals. Mostly CO₂+H₂ to (m)ethanol, which can then be used as a feedstock for olefins, formaldehyde, 	 CO₂ is stored in building materials through mineralisation
Pros	 Can function in existing infrastructure Fuels with high energy density, can provide solution for sectors which are hard to electrify or cannot run on pure hydrogen (e.g. aviation, maritime) 	 Can provide substitute for fossil feedstocks (naphtha and propane) CO₂ is stored for longer period of time compared to fuels (only released if end-product is incinerated at end of life) Chemical processes based on (m)ethanol are not new, and have high TRL. Main novelty is to make (m)ethanol based on CO₂ rather than CO. 	 CO₂ is stored for a long time No high energy/green H₂ requirements, even exothermic (generates carbon-free heat) Minerals can be provided via other waste streams (e.g. steel slag, recycled concrete) Can substitute other, carbon intensive products
Cons	 A lot of green H₂ needed (lots of energy losses along the process) CO₂ eventually still ends up in the atmosphere. 	 a lot of green H₂ needed (lots of energy losses along the process) 	TRL is relatively low and only now reaching commercial scales

Three other technologies provide alternative 'carbon neutral' solutions

	e-Fuels	Chemicals	Building materials
1 Biomass	Biofuels	 Biobased chemicals (often implies biomass is 'gasified' to obtain a syngas (CO + H₂), which is then transformed into (m)ethanol. 	 No direct competitor, but increased use of wood in constructions could be seen as competing technology
2 Plastic waste	 Alternatives for chemicals is mechanical recycling, or chemical recycling via chemolysis or catalytic reforming Pyrolysis: plastic waste is transformed into a naphtha-like substance, which can then be used to produce fuels or chemicals Gasification: plastic waste is gasified to obtain CO + H₂, which can then be turned into (m)ethanol which can be used as fuel or as platform molecule for chemicals production 		
3 Other waste streams	 Use of waste streams with CO (e.g. Blast furnace making (m)ethanol with CO instead of CO₂ is tha the CO route vs. 192 kg per t MeOH under the C 	• n.a.	

Overview of the technologies implemented to capture the carbon

Groups		Technology				
		Origins	Descriptions	Energy demand		
Carbon capture from exhaust s	Combustion emissions	Bio/e- Fuel	Biomass/e power plants and industry (Solid, gas)	Carbon capture from the exhaust emissions (combustions or process)	Across industry and energy supply	
		Fossil fuel	Fossil fuel power plants and industry (coal, liquid, gas)		 High concentration exhausts lead to lower energy/t CO₂ Lower concentration exhausts lead to higher energy/t CO₂ 	
	Process emissions		Industrial processes			
Carbon c	apture from th	ne Air	Direct Air Capture (DAC)	Carbon Direct Air Capture for the energy supply sector	Highest energy/t CO ₂	

34

Overview of technologies modelled to use/capture carbon

Groups		Technology				
		Name	Description	Container	Replacement	
Usage	e-Fuels	e-Methanation	through methanation $4 + H_2 + \bullet \rightarrow CH_4$	in synthetic methane	replaces natural gas	
		Fischer-Tropsch process	through Fischer-Tropsch process $4 + H_2 + - \rightarrow$ Synthetic fuel	In synthetic liquid fuel	replaces liquid fossil fuels	
		e-Methanol	through methanol synthesis $4 + H_2 + \bullet \rightarrow$ Synthetic methanol	In synthetic methanol	replaces maritime fuels	
	Chemicals	e-MTO	MTO with synthetic methanol $4 + H_2 + - \rightarrow$ Synthetic methanol \rightarrow Olefins	In Olefins	Fossil based olefins	
		e-Dehydration	Dehydration of synthetic ethanol $4 + H_2 + \bullet + CO_2 \rightarrow 4 + Synthetic ethanol$ $\rightarrow Olefin$	In Olefins	Fossil based olefins	
	Buildings materials	Cement CO ₂ curing	Curing to store carbon in the concrete Cement+ $ \rightarrow $ Concrete	In concrete	Concrete with water based curing	
		Carbstone	Carbon bricks $4 + - + Ca/Mg + \dots \rightarrow Ceramic$	In ceramics	Ceramic bricks	
Storago	Industry	CCS	Capture of industrial emissions	stored	/	
Storage	Energy supply	CCS	Capture of energy supply emissions	stored	/	

Agenda

Climact

L'ambition attendue pour réduire les émissions

Les leviers pour réduire

Insights sur base de roadmaps

In a high CCU scenario (a scenario supporting CCU), \sim 230 MtCO₂e is captured of per year (EU27)

Illustration of emissions captured in an European high CCU scenario

(MtCO₂e)

38 NOTE: Emissions of the EU27 today equal 3380 MtCO₂e

8 SOURCE: <u>www.pathwaysexplorer.org</u>, preliminary scenario designed by Climact, in line with strong CCU demand

CONFIDENTIAL

In a high CCU scenario, CCU would use almost all the potential supply of CO₂

Illustration of carbon used in an European High CCU scenario

(MtCO₂e)

• Share of CCS vs CCU varies along scenarios

• In high CCU scenario

- \circ High ambition in CO₂ use
- \circ CO₂ demand is close to the CO₂ supply
 - 100% of e-fuels in aviation (decrease ~50% in demand) and marine sector
 - 25% of CCU plastics in a circular economy
 - 100% cement uses CO₂ curing

		e-Methanation
-	e-Fuels	Fischer-Tropsch
		e-Methanol
Usage	Chomicals	e-MTO
	Chemicais	e-Dehydration
	Buildings materials	Cement CO ₂ curing
		Carbstone
Storago	Industry	CCS
Storage	Energy supply	CCS

CLIMACT

In a European high CCU scenario, ~30% of RES is allocated to CCU

Electricity consumption of CCU related technologies (TWh, in 2050 unless specified)

- Hydrogen production is the most electro-intensive process
- CCU development relies on massive RES production

Further investigation needed to answer following questions:

- Availability of RES for CCU?
- Competition with other needs and storage/back-up technologies?
- Potential reliance on imports from other regions?

Bunker energy is considered as 50% of the energy needed for international travel (inland share) This can be reduced by importing a higher share of e-fuels (30% imports for now), or reducing the e-fuel demand

In a more conservative CC scenario, ~65 MtCO₂e is captured of per year

Illustration of emissions captured in an European high CCU scenario

 $(MtCO_2e)$

In a more conservative CC scenario, CCU would use a higher share of the CO₂ captured

Illustration of carbon used in an European scenario with less CC

(MtCO₂e)

In a more conservative CC scenario ~10% of RES is allocated to CCU

Electricity consumption of CCU related technologies (TWh, in 2050 unless specified)

Conservative CC scenario

RES production [TWh]	4200
% of RES used for CCU	~10% ²

43 NOTES: (1) (2)

Bunker energy is considered as 50% of the energy needed for international travel (inland share) This can be reduced by importing a higher share of e-fuels (30% imports for now), or reducing the e-fuel demand

CLIMACT

Empowering **you** to act on **climate change**

Do you have any question

Thank you.

www.climact.com | +32 10 750 740 | info@climact.com | Linkedin

Agenda

Backup

()

CCU CO₂ emissions/removals are accounted for downstream

There are 2 options to account the climate benefit of CCU: upstream or downstream

Option A (downstream accounting of climate benefit)

- When CO₂ is captured and used, the reduction/removal is accounted downstream
 - E.g. A steel plant captures 1 t of fossil CO₂, which is captured and turned into synthetic kerosene. The steel plant still reports 1 t of CO₂, and synthetic kerosene is considered zero-emission
 - E.g. A steel plant captures 1 t of fossil CO₂, which is captured and turned into a CCU construction material. The steel plant still reports 1 t of CO₂. The CCU construction material is considered to have removed 1 t of CO₂
- CO₂ is considered to be 'emitted' at its point of origin

Option B (upstream accounting of climate benefit)

- When case CO₂ is captured, its reduction/removal is accounted at the point where it is captured
- CO₂ is then considered to be 'emitted' at its point of release into the atmosphere